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1. Introduction

Let U := U(a, b) = {Un}n≥0 be the Lucas sequence given by U0 = 0, U1 = 1 and

Un+2 = aUn+1 + bUn for all n ≥ 0, where b ∈ {±1}. (1)

Its characteristic equation is x2 − ax − b = 0 with roots

(α, β) =
(
a +

√
a2 + 4b
2 ,

a−
√
a2 + 4b
2

)
. (2)

When a ≥ 1, we have that α > 1 > |β|. We assume that Δ = a2 + 4b > 0 and that α/β
is not a root of unity. This only excludes the pairs (a, b) ∈ {(0, ±1), (±1, −1), (2, −1)}
from the subsequent considerations. Here, we look at the relation

Um | Us
n+k − Us

n, (3)

with positive integers k, m, n, s. Note that when (a, b) = (1, 1), then Un = Fn is the nth 
Fibonacci number. Taking k = 1 and using the relations

Fn+1 − Fn = Fn−1,

Fn+1 + Fn = Fn+2,

F 2
n+1 + F 2

n = F2n+1,

it follows that relation (3) holds with s = 1, 2, 4, and m = n −1, n +1, 2n +1, respectively. 
Further, in [2], the authors assumed that m and n are coprime positive integers. In this 
case, Fn and Fm are coprime, so the rational number Fn+1/Fn is defined modulo Fm. 
Then it was shown in [2] that if this last congruence class above has multiplicative order 
s modulo Fm and s /∈ {1, 2, 4}, then

m < 500s2. (4)

In this paper, we study the general divisibility relation (3) and prove the following result.

Theorem 1. Let a be a non-zero integer, b ∈ {±1}, and k a positive integer. Assume that 
(a, b) /∈ {(±1,−1), (±2,−1)}. Given a positive integer m, let s be the smallest positive 
integer such that divisibility (3) holds. Then either s ∈ {1, 2, 4}, or

m < 20000(sk)2. (5)
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2. Preliminary results

We put V := V(a, b) = {Vn}n≥0 for the Lucas companion of U which has initial 
values V0 = 2, V1 = a and satisfies the same recurrence relation Vn+2 = aVn+1 + bVn for 
all n ≥ 0. The Binet formulas for Un and Vn are

Un = αn − βn

α− β
, Vn = αn + βn for all n ≥ 0. (6)

The next result addresses the period of {Un}n≥0 modulo Um, where m ≥ 1 is fixed.

Lemma 2. The congruence

Un+4m ≡ Un (mod Um) (7)

holds for all n ≥ 0, m ≥ 2.

Proof. This follows because of the identity

Un+4m − Un = UmVmVn+2m,

which can be easily checked using the Binet formulas (6). �
The following is Lemma 1 in [2]. It has also appeared in other places.

Lemma 3. Let X ≥ 3 be a real number. Let a and b be positive integers with 
max{a, b} ≤ X. Then there exist integers u, v not both zero with max{|u|, |v|} ≤

√
X

such that |au + bv| ≤ 3
√
X.

The following lemma is well-known, but we include the proof for the reader’s conve-
nience. In what follows, a unit means Dirichlet unit, that is an algebraic integer η such 
that η−1 is also an algebraic integer.

Lemma 4. Let v > 1 be an integer and ζ be a primitive vth root of unity. Then

∏
gcd(k,v)=1

(1 − ζk) =
{
p, if v = p� is a prime power,
1, if v has at least two distinct prime divisors,

(8)

the product being over the residue classes mod v coprime with v. In particular, in the 
second case, 1 − ζ is a unit.
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Proof. The product on the left of (8) is Φv(1), where Φv(X) denotes the vth cyclotomic 
polynomial. For v = p� we have

Φp�(X) = Xp� − 1
Xp�−1 − 1

= Xp�−1(p−2) + Xp�−1(p−1) + · · · + Xp�−1
+ 1,

and Φp�(1) = p, proving the prime power case. In particular, (1 − ζ) | p in this case.
Now assume that v is divisible by two distinct primes p and p′. Then ζv/p is a primitive 

root of unity of order p, which implies that in the ring Z[ζ] we have (1 − ζ) | (1 − ζv/p) | p. 
Similarly, (1 − ζ) | p′. The divisibility relations (1 − ζ) | p and (1 − ζ) | p′ imply that 
(1 − ζ) | 1, that is, 1 − ζ is a unit. Hence its Q(ζ)/Q-norm is ±1. Since it is obviously 
positive, it must be 1. But this norm is exactly the left-hand side of (8). �

This lemma has the following consequence, which is again well-known, but we did not 
find a suitable reference.

Corollary 5.

1. Assume that ζ and ξ are roots of unity of coprime orders, and both distinct from 1. 
The ζ − ξ is a unit.
From now on m and n are positive integers and d = gcd(m,n).

2. In Z[x] we have the equality of ideals (xm − 1, xn − 1) = (xd − 1).
3. Let γ be an algebraic integer in some number field K. Then we have the equality of 

OK-ideals (γm − 1, γn − 1) = (γd − 1).

Proof. Item 1 follows from the second assertion of Lemma 4.
In item 2 it suffices to show that xd − 1 ∈ (xm − 1, xn − 1). In the case d = 1 this 

reduces to showing that

1 ∈
(
xm − 1
x− 1 ,

xn − 1
x− 1

)
. (9)

The resultant of the polynomials xm−1
x−1 and xn−1

x−1 is the product of the factors of the 
form ζ − ξ, where ζ and ξ are roots of unity of orders dividing m and n, respectively, 
and none of ζ, ξ is 1. If d = gcd(m,n) = 1, then each factor is a unit by item 1. Hence, 
the resultant is a unit of Z, that is, ±1, proving (9) in the case d = 1.

The case of arbitrary d reduces to the case d = 1. Indeed, by the latter, xd − 1 belongs 
to the ideal (xm − 1, xn − 1) in the ring Z[xd]. Hence, the same is true in the ring Z[x].

Finally, item 3 is an immediate consequence of the previous item. �
We will use one simple property of cyclotomic polynomials. Recall that for a positive 

integer v we denote by Φv(X) the vth cyclotomic polynomial. Then for α > 1 we have 
the trivial estimate Φv(α) > (α− 1)ϕ(v) (where ϕ(v) is, of course, the Euler totient). We 
will need a slightly sharper estimate.
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Lemma 6. Let v be a positive integer and α > 1 a real number. Then for v > 1 we have

Φv(α) >
(
α(α− 1)

)ϕ(v)/2
. (10)

Proof. We use the identity

Φv(X) =
∏
d|v

(Xd − 1)μ(v/d),

where μ(·) is the Möbius function. We have clearly

(αd − 1)μ(v/d) ≥
{
αdμ(v/d), μ(v/d) = −1,
αdμ(v/d) α−1

α , μ(v/d) = 1.
(11)

Moreover:

• denoting by τ∗(v) the number of square-free divisors of v, we have, for v > 1, exactly 
τ∗(v)/2 divisors with μ(v/d) = 1 and exactly τ∗(v)/2 divisors with μ(v/d) = −1;

• inequality (11) is strict for all d | v satisfying μ(v/d) �= 0, with at most one exception.

Hence, multiplying (11) for all d | v with μ(v/d) �= 0, and using the identity ϕ(v) =∑
d|v dμ(v/d), we obtain, for v > 1, the lower estimate

Φv(α) > αϕ(v)
(
α− 1
α

)τ∗(v)/2

. (12)

For v /∈ {1, 2, 6}, we have τ∗(v) ≤ ϕ(v), which implies

|Φv(α)| > αϕ(v)
(
α− 1
α

)ϕ(v)/2

=
(
α(α− 1)

)ϕ(v)/2
,

proving (10) for v /∈ {1, 2, 6}. And for v ∈ {2, 6}, this is obviously true. �
The following lemma is the workhorse of our argument.

Lemma 7. Let a, b and k be as in the statement of Theorem 1, and assume in addition 
that a ≥ 1. Let v ≥ 1 be an integer and ζ a primitive vth root of unity. Define α as in (2)
and assume that the numbers

α and αk − (−b)k ζ̄
αk − ζ

(13)

are multiplicatively dependent. Then we have one of the following options:
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(i) (−b)k = −1, v = 4;
(ii) (a, b, k) ∈ {(1, 1, 1), (2, 1, 1)} and v ∈ {1, 2};
(iii) (−b)k = 1, v ∈ {1, 2};
(iv) (a, b, k) = (4, −1, 1) and v ∈ {4, 6}.

Proof. We use the notation

K = Q(α), L = Q(ζ), M = Q(α, ζ), α1 = αk, δ = (−b)k.

Note that δα−1
1 = βk is the Galois conjugate of α1.

Recall that we disregard the cases (a, b) ∈ {(1,−1), (2,−1)}. In addition to this, we 
will disregard the case (a, b, k) = (1, 1, 1), because it is settled in Lemma 2 of [2]. This 
implies that

α1 ≥ 1 +
√

2. (14)

When δ = 1 we can say more:

α1 ∈
{

3 +
√

5
2 , 2 +

√
3
}

or α1 ≥ 5 +
√

21
2 . (15)

We will also assume that we are not in one of the instances (i), (iii) above; this is 
equivalent to saying that

ζ2 �= δ. (16)

Since the numbers (13) are multiplicatively dependent, then the second of these num-
bers must be a unit (because the first is). In particular,

(α1 − ζ) | (α1 − δζ̄)

in the ring OM , which implies that

(α1 − ζ) | (ζ − δζ̄). (17)

This divisibility relation is very restrictive: we will see that is satisfied in very few cases, 
which can be verified by inspection.

We first show the following identity for the norm of α1 − ζ:

|NM/Q(α1 − ζ)| =
(
α
−ϕ(v)
1 Φv(α1)Φv∗(α1)

)[M :L]/2
, (18)

where Φv(X) is the vth cyclotomic polynomial and
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v∗ =

⎧⎪⎪⎨
⎪⎪⎩
v if 4 | v or δ = 1,
v/2 if 2 ‖ v and δ = −1,
2v if 2 � v and δ = −1.

(19)

Note that

ϕ(v∗) = ϕ(v), Φv∗(X) = ±Φv(δX), Φv(X−1) = ±X−ϕ(v)Φv(X),

the sign in last identity being “+” for v > 1 and the sign in the middle identity being 
“+” if δ = 1 or min{v, v∗} > 1.

Let us prove (18). When α /∈ L, the conjugates of α1 − ζ are the 2ϕ(v) numbers α1 − ζ ′

and δα−1
1 − ζ ′′, where both ζ ′ and ζ ′′ run through the set of primitive vth roots of unity. 

Hence, in this case

|NM/Q(α1 − ζ)| = |Φv(α1)Φv(δα−1
1 )| = α

−ϕ(v)
1 Φv(α1)Φv∗(α1),

which is (18) in the case α /∈ L.
Now assume that α ∈ L, and set

G = Gal(L/Q), H = Gal(L/K),

for the Galois groups of the various extensions. The group H is a subgroup of G of 
index 2, and we have

ασ
1 =

{
α1, σ ∈ H,

δα−1
1 , σ ∈ G�H.

Hence,

|NM/Q(α1 − ζ)| = |NL/Q(α1 − ζ)|

=
∏
σ∈H

|α1 − ζσ|
∏

σ∈G�H

|δα−1
1 − ζσ|

= α
−ϕ(v)/2
1

∏
σ∈H

|α1 − ζσ|
∏

σ∈G�H

|δα1 − ζσ|,

where in the second equality we used α1 ∈ R. In a similar fashion,

|NM/Q(α1 − δζ̄)| =
∏
σ∈H

|α1 − δζ̄σ|
∏

σ′∈G�H

|δα−1
1 − δζ̄σ|

= α
−ϕ(v)/2
1

∏
σ∈H

|δα1 − ζσ|
∏

σ∈G�H

|α1 − ζσ|.

Since α1−δζ̄ is a unit, the two norms computed above are equal. Hence,
α1−ζ
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|NM/Q(α1 − ζ)|2 = |NM/Q(α1 − ζ)NM/Q(α1 − δζ̄)|

= α
−ϕ(v)
1

∏
σ∈G

|α1 − ζσ|
∏
σ∈G

|δα1 − ζσ|

= α
−ϕ(v)
1 Φv(α1)Φv∗(α1),

which proves (18) in the case α ∈ L as well.
Combining (17) and (18) and recalling (16), we obtain the inequality

0 < α
−ϕ(v)/2
1 |Φv(α1)Φv∗(α1)|1/2 ≤ |NL/Q(1 − δζ2)|. (20)

This will be our basic tool.
Our next observation is that 1 − δζ2 cannot be a unit. Indeed, if it is a unit, then the 

right-hand side of (20) is 1 and min{v, v∗} > 1. Hence, applying Lemma 6, we obtain

α
−ϕ(v)/2
1

(
α1(α1 − 1)

)ϕ(v)/2
< 1,

which implies α1 < 2, contradicting (14).
Thus, 1 − δζ2 is non-zero, but not a unit. Applying Lemma 4, we find that this is 

possible only in the following cases:

v = p�, δ = 1, (21)

v = 2p�, δ = 1, (22)

v = 2�, � ≥ 3, (23)

v ∈ {1, 2, 4}, δ �= ζ2, (24)

where (here and below) � is a positive integer and p is an odd prime number. We study 
these cases separately.

In the case (21), we have

Φv(X) = Φv∗(X) = Xp� − 1
Xp�−1 − 1

and NL/Q(1 − ζ2) = p

by Lemma 4. We obtain

1
α
p�−1(p−1)/2
1

αp�

1 − 1
αp�−1

1 − 1
≤ p.

The left-hand side is strictly bounded from below by αp�−1(p−1)/2, which gives 
αp�−1

1 < p
2

p−1 . Checking with (15) leaves the only option

α1 = 3 +
√

5
2 , p� = 3,

which is eliminated by direct verification.
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In the case (22), we have

Φv(X) = Φv∗(X) = Xp� + 1
Xp�−1 + 1

and NL/Q(1 − ζ2) = p.

We obtain

1
α
p�−1(p−1)/2
1

αp�

1 + 1
αp�−1

1 + 1
≤ p.

From (15), we deduce αp�−1

1 + 1 ≤ 1.4αp�−1

1 , which implies the inequality αp�−1

1 <

(1.4 p)
2

p−1 . Invoking again (15), we are left with the three options

α1 = 3 +
√

5
2 , p� ∈ {3, 5}, (25)

α1 = 2 +
√

3, p� = 3. (26)

The two cases in (25) are eliminated by verification, while (26) leads to (a, b, k, v) =
(4, −1, 1, 6), one of the two instances in (iv).

In the case (23), we have

Φv(X) = Φv∗(X) = X2� − 1
X2�−1 − 1

and NL/Q(1 − δζ2) = 4.

We obtain

1
α2�−2

1

α2�

1 − 1
α2�−1

1 + 1
≤ 4,

which implies α2�−2

1 ≤ 4. Since � ≥ 3, this contradicts (14).
In the final case (24), it more convenient to use the divisibility relation (17) directly. 

If v ∈ {1, 2}, then ζ2 = 1 and δ = −1. Taking the norm in both sides of (17), we obtain

α1 − α−1
1 = TrK/Q(α1) | 4.

Together with NK/Q(α1) = δ = −1 and inequality (14), this implies two possibilities:

α1 = 1 +
√

2, α1 = 2 +
√

3. (27)

The latter is disqualified by inspection. The former yields (a, b, k) = (2, 1, 1), which is (ii).
In a similar fashion one treats v = 4. In this case ζ2 = −1 and δ = 1, and, taking the 

norm in (17), we obtain

(α1 + α−1
1 )2 = (TrK/Q(α1))2 | 16.
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We again have one of the options (27), but this time the former is eliminated by in-
spection, and the latter leads to (a, b, k) = (4,−1, 1), the missing instance in (iv). This 
completes the proof of the lemma. �

The following is a generalization of Lemma 4 from [2].
For a prime number p and a nonzero integer m, we put νp(m) for the exponent of the 

prime p in the factorization of m. For a finite set of primes S and a positive integer m, 
we put

mS =
∏
p∈S

pνp(m)

for the largest divisor of m whose prime factors are in S. For any prime number p we 
put fp for the index of appearance in the Lucas sequence {Un}n≥0, which is the minimal 
positive integer k such that p | Uk.

Lemma 8. Let a ≥ 1. If S is any finite set of primes and m is a positive integer, then

(Um)S ≤ α2m lcm[Ufp : p ∈ S].

Proof. It is known that

νp(Um) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if m �≡ 0 (mod fp);
νp(Ufp) + νp(m/fp) if m ≡ 0 (mod fp), p odd;
ν2(U2) + ν2(m/2) if m ≡ 0 (mod 2), p = 2, a even;

ν2(U3) if m ≡ 3 (mod 6), p = 2, a odd;
ν2(U6) + ν2(m/2) if m ≡ 0 (mod 6), p = 2, a odd.

The above relations follow easily from Proposition 2.1 in [1]. In particular, the inequality

νp(Um) ≤ νp(Ufp) + νp(m) + δp,2

always holds with δp,2 being 0 if p is odd or p = 2 and a is even and ν2((a2 + 3b)/2) if 
p = 2 and a is odd. We get that

(Um)S ≤

⎛
⎝∏

p∈S
pνp(Ufp )

⎞
⎠

⎛
⎜⎜⎝∏

p|m
p>2

pνp(m)

⎞
⎟⎟⎠ 2ν2(m)+ν2((a2+3b)/2

< α2m lcm[Ufp : p ∈ S],

which is what we wanted to prove. For the last inequality above, we used the fact that 
2ν2((a2+3b)/2) ≤ (a2 + 3b)/2 = (α2 − αβ + β2)/2 < α2. �
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3. Proof of Theorem 1

We assume that m ≥ 10000k. Since Un is periodic modulo Um with period 4m
(Lemma 2), we may assume that n ≤ 4m. We split Um into various factors, as follows. 
Write

Us
n+k − Us

n =
∏
d|s

Φd(Un+k, Un),

where Φd(X, Y ) is the homogenization of the cyclotomic polynomial Φd(X). We put 
s1 := lcm[2, s], S := {p : p | 6s} and

D := (Um)S ;

A := gcd(Um/D,
∏

d≤6, d�=5

Φd(Un+k, Un);

E := gcd(Um/D,
∏
d|s1

d=5 or d>6

Φd(Un+k, Un).

Clearly,

Um | ADE.

Before bounding A, D, E, let us comment on the sign of a. If a < 0, then we change the 
pair (a, b) to (−a, b). This has as effect replacing (α, β) by (−α, −β) and so Un(α, β) =
(−1)n−1Un(α, β) for all n ≥ 0. In particular, Um remains the same or changes sign. 
Further, if k is even then

Φd(Un+k(−α,−β), Un(−α,−β)) = ±Φd(Un+k(α, β), Un(α, β)),

while if k is odd, then

Φd(Un+k(−α,−β), Un(−α,−β)) = ±Φd(Un+k(α, β),−Un(α, β))

= ±Φd∗(Un+k(α, β), Un(α, β)),

where the d∗ has been defined at (19). Note that the sets {d ≤ 6, d �= 5} and {d | s1,

d = 5 or d > 6} are closed under the operation d 	→ d∗. Hence, D, A, E do not change 
if we replace a by −a, so we assume that a > 0. By the Binet formula (6), we get easily 
that the inequality

αn−2 ≤ Un ≤ αn is valid for all n ≥ 1. (28)

We are now ready to bound A, D, E.
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The easiest to bound is D. Namely, by Lemma 8 and the fact that fp ≤ p + 1 for all 
p | 6s, we get

D ≤ α2m
∏
p|6s

Up+1 < mα2+
∑

p|6s(p+1) < α6s+3+log m/ log α, (29)

where we used the fact that 
∑

p|t(p + 1) ≤ t + 1, which is easily proved by induction on 
the number of distinct prime factors of t.

We next bound E.
Note that

E |
∏

ζ:ζs1=1
ζ /∈{±1,±i,±ω,±ω2}

(Un+k − ζUn), (30)

where ω := e2πi/3 is a primitive root of unity of order 3.
Let K = Q(e2πi/s1 , α), which is a number field of degree d ≤ 2φ(s1) = 2φ(s). Assume 

that there are � roots of unity ζ participating in the product appearing in the right-hand 
side of (30) and label them ζ1, . . . , ζ�. Write

Ei = gcd(E,Un+k − ζiUn) for all i = 1, . . . , �, (31)

where Ei are ideals in OK . Then relations (30) and (31) tell us that

EOK |
�∏

i=1
Ei. (32)

Our next goal is to bound the norm |NK/Q(Ei)| of Ei for i = 1, . . . , �. First of all, Um ∈ Ei. 
Thus, with formula (6) and the fact that β = (−b)α−1, we get

αm ≡ (−b)mα−m (mod Ei).

Multiplying the above congruence by αm, we get

α2m ≡ (−b)m (mod Ei). (33)

We next use formulae (6) and (31) to deduce that

(αn+k − (−b)n+kα−n−k) − ζ(αn − (−b)nα−n) ≡ 0 (mod Ei), (ζ := ζi).

Multiplying both sides above by αn, we get

α2n(αk − ζ) − (−b)n+k(α−k − (−b)kζ) ≡ 0 (mod Ei). (34)
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Let us show that αk − ζ and Ei are coprime. Assume this is not so and let π be some 
prime ideal of OK dividing both αk−ζ and Ei. Then we get αk ≡ ζ (mod π) and so α−k ≡
(−b)kζ (mod π) by (34). Multiplying these two congruences we get 1 ≡ (−b)kζ2 (mod π). 
Hence, π | 1 − (−b)kζ2. If this number is not zero, then, (−b)kζ2 is a root of unity whose 
order divides 6s, so, by Lemma 6, we get that π | 6s, which is impossible because 
π | Ei | E, and E is an integer coprime to 6s. If the above number is zero, we get that 
ζ2 = ±1, so ζ ∈ {±1, ±i}, but these values are excluded at this step. Thus, indeed αk−ζ

and Ei are coprime, so αk − ζ is invertible modulo Ei. Now congruence (34) shows that

α2n+k ≡ (−b)nζ
(
αk − (−b)kζ

αk − ζ

)
(mod Ei). (35)

We now apply Lemma 3 to a = 2m and b = 2n + k ≤ 8m + k < 9m with the choice 
X = 9m to deduce that there exist integers u, v not both zero with max{|u|, |v|} ≤

√
X

such that |2mu +(2n +k)v| ≤ 3
√
X. We raise congruence (33) to u and congruence (35)

to v and multiply the resulting congruences getting

α2mu+(2n+k)v = (−b)mu+nvζv
(
αk − (−b)kζ

αk − ζ

)v

(mod Ei).

We record this as

αR ≡ η

(
αk − (−b)kζ

αk − ζ

)S

(mod Ei) (36)

for suitable roots of unity η and ζ of order dividing s1 with ζ not of order 1, 2, 3, 4, or 6, 
where R := 2mu + (2n + k)v and S := v. We may assume that R ≥ 0, for if not, we 
replace the pair (u, v) by the pair (−u, −v), thus replacing (R, S) by (−R, −S) and η
by η−1 and leaving ζ unaffected. We may additionally assume that S ≥ 0, for if not, we 
replace S by −S and ζ by (−b)kζ, again a root of unity of order dividing s1 but not of 
order 1, 2, 3, 4, or 6 and leave R and η unaffected. Thus, Ei divides the algebraic integer

Ei = αR(αk − ζi)S − ηi(αk − (−b)kζi)S . (37)

Let us show that Ei �= 0. If Ei = 0, we then get

αR = ηi

(
α− (−b)kζi

α− ζi

)S

,

and after raising both sides of the above equality to the power s1, we get, since ηs1i = 1, 
that

αs1R =
(
αk − (−b)kζi

)Ss1

.

α− ζi
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Lemma 7 gives us a certain number of conditions all of which have ζi or a root of unity 
of order 1, 2, 4, or 6, which is not our case. Thus, Ei is not equal to zero. We now bound 
the absolute values of the conjugates of Ei. We find it more convenient to work with the 
associate of Ei given by

Gi = α−�R/2	Ei = αR−�R/2	(αk − ζi)S − α−�R/2	ηi(αk − (−b)kζi)S .

Note that

R ≤ |2m + (2n + k)v| ≤ 3
√
X = 9

√
m, and S = |v| ≤

√
X = 3

√
m.

Let σ be an arbitrary element of G = Gal(K/Q). We then have that ησi = η′i, ζσi = ζ ′i, 
where η′i and ζ ′i are roots of unity of order dividing s1. Furthermore, ασ ∈ {α, β}. 
If ασ = α, we then get

|Gσ
i | = |αR−�R/2	(αk − ζ ′i)S − η′iα

−�R/2	(α− (−b)kζ ′i)
S |

≤ α(R+1)/2(αk + 1)S + (αk + 1)S

≤ 2α(R+1)/2(α + 1)Sk ≤ α2+(9
√
m+1)/2+6

√
mk

≤ α11
√
mk, (38)

while if ασ = β, we also get

|Gσ
i | = |βR−�R/2	(βk − ζ ′i)b − β−�R/2	η′i(βk − (−b)kζ ′i)

S |

≤ (α−k + 1)S + αR/2(α−k + 1)S

= αS + αR/2+S ≤ 2αR/2+S ≤ α2+4.5
√
m+6

√
m

= α11
√
mk.

In the above, we used the fact that α−k+1 ≤ α−1 +1 ≤ α. In conclusion, inequality (38)
holds for all σ ∈ G. Thus, if we write G(1)

i , . . . , G(d)
i for the d conjugates of Gi in K, 

we then get that

|NK/Q(Ei)| ≤ |NK/Q(Ei)| = |NK/Q(Gi)| ≤ α11dk
√
m,

where the first inequality above follows because Ei divides Ei; hence Gi, and Ei �= 0. 
Multiplying the above inequalities for i = 1, . . . , �, we get that

E� = |NK/Q(E)| =
∣∣NK/Q (EOK)

∣∣ ≤
∣∣∣∣∣NK/Q

(
�∏

i=1
Ei

)∣∣∣∣∣
≤

∣∣∣∣∣
�∏
NK/Q(Gi)

∣∣∣∣∣ ≤ α11d�k
√
m,
i=1
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therefore

E ≤ α11kd
√
m ≤ α22kφ(s)

√
m < α22ks

√
m. (39)

In the above, we used that d ≤ 2φ(s) ≤ 2s.
We are now ready to estimate A. We write

A1 := gcd(Um, U2
n+k − U2

n);

A2 := gcd(Um, U2
n+k + U2

n);

A3 := gcd
(
Um,

U6
n+k − U6

n

U2
n+k − U2

n

)
.

Clearly, A ≤ A1A2A3. We bound each of A1, A2, A3. We first estimate A1 and A2 and 
deal with A3 later. Write

U2
n =

(
αn − βn

α− β

)2

= α2n + 2(−b)n + α−2n

(α + bα−1)2 ;

U2
n+k = α2n+2k + 2(−b)n(−b)k + α−2n−2k

(α + bα−1)2 .

Assume that (−b)k = 1. If ζ ∈ {±i}, then (αk − (−b)kζ)/(αk − ζ) = (αk + ζ)/
(αk − ζ) is multiplicatively independent with α by Lemma 7. The argument which lead 
to inequality (39) shows that

A2 ≤ α11kd1
√
m ≤ α44k

√
m, (40)

where d1 = 4 is the degree of the field Q(α, i). To estimate A1, we set γ = −bα2 and, 
using that (−b)k = 1, we find

U2
n+k − U2

n = α2n+2k + α−2n−2k − α2n − α−2n

(α + bα−1)2

= α2−2n−k (γ2n+k − 1)(γk − 1)
(γ − 1)2 ,

Um = (−bα)1−m

(
γm − 1
γ − 1

)
.

In the ring of integers O = OK of the quadratic field K = Q(α) consider the ideals

a =
(
γm − 1
γ − 1 ,

γ2n+k − 1
γ − 1

)
, b =

(
γm − 1
γ − 1 ,

γk − 1
γ − 1

)
.

Clearly, A1 | ab, whence
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A2
1 = NK/Q(A1) ≤ |NK/Q(a)||NK/Q(b)|.

Clearly,

|NK/Q(b)| ≤
∣∣∣∣NK/Q

(
(−b)kα2k − 1
α + bα−1

)∣∣∣∣ = |NK/Q(Uk)| < α2k.

To estimate |NK/Q(a)|, observe that a = (γd−1)/(γ−1) by item 3 of Corollary 5, where 
d = gcd(m, 2n + k). Using the obvious inequality |γ−1| ≤ 1/2, we get that

|NK/Q(a)| =
∣∣∣∣γd − 1
γ − 1

γ−d − 1
γ−1 − 1

∣∣∣∣ ≤ 6|γ|d = 6α2d < α2d+4.

Hence, A1 ≤ αd+k+2. It is important to note that d �= m: otherwise we would have had 
Um | U2

n+k − U2
n, contradicting our hypothesis about the minimality of s. Therefore d is 

a proper divisor of m, showing that

A1 ≤ αm/2+k+2. (41)

Thus, we have bounded A1 and A2 in the case (−b)k = 1.
The case (−b)k = −1 can be treated analogously, but A1 and A2 swap roles. This 

time for ζ ∈ {±1} the number α
k−(−b)kζ
αk−ζ

= αk+ζ
αk−ζ

is multiplicatively independent of α by 
Lemma 7, which implies the estimate

A1 ≤ α22k
√
m. (42)

Next, using that (−b)k = −1, we find

U2
n+k + U2

n = α2−n−k (γ2n+k − 1)(γk − 1)
(γ − 1)2 ,

and arguing exactly as in the case (−b)k = 1, we get

A2 ≤ αm/2+k+2. (43)

Hence, we get that both in case (−b)k = 1 and in case (−b)k = −1, we have

A1A2 ≤ αm/2+k+2+44k
√
m. (44)

Finally, for A3, we note that by Lemma 7, unless α = 2 +
√

3, we have that α
k−(−b)kζ
αk−ζ

is 
multiplicatively independent of α for ζ ∈ {±ω, ±ω2}. Thus, writing

A3,± = gcd(A3, U
2
n+k ± Un+kUn + U2

n),
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we get, by arguing in the field Q(α, e2πi/3) of degree 4 as we did in order to prove 
inequality (39), that

A3,± ≤ α44k
√
m, (45)

which leads to

A3 ≤ A3,+A3,− ≤ α88k
√
m. (46)

So, let us assume that (a, b, k) = (4, 1, 1), so α = 2 +
√

3. Note that since Ut ≡ t (mod 2), 
it follows that Us

n+k −Us
n = Us

n+1 −Us
n is odd and a multiple of Um, therefore m is odd. 

For ζ ∈ {ω, ω2}, we have that α
k−(−b)kζ
αk−ζ

= α−ζ
α−ζ are multiplicatively independent of α, 

which leads, by the previous argument, to

A3,+ ≤ α44k
√
m. (47)

As for A3,−, since

U2
n+1 − Un+1Un + U2

n = V2n+1/4,

we have that

A3,− | gcd(Um, V2n+1) = 1,

where the last equality follows easily from the fact that m is and 2n + 1 are both odd 
(see (iii) of the Main Theorem in [3]). Together with (47), we infer that inequality (46)
holds in this last case as well. Together with (44), we get that the inequality

A ≤ A1A2A3 ≤ αm/2+k+2+132k
√
m (48)

holds in all instances.
Inequality (28) together with estimates (29), (48) and (39), give

αm−2 ≤ Um = DAE ≤ α6s+3+log m/ log α+m/2+k+2+(132k+22ks)
√
m.

Since s ≥ 3, we have 132 + 22s ≤ 66s. Since also 1/ logα < 3, we get

m/2 ≤ (6s + 7 + 3 logm + k) + 66sk
√
m.

Since m ≥ 10000, one checks that 6s + 7 + 3 logm + k < ks
√
m. Hence,

m ≤ 134ks
√
m, (49)

which leads to the desired inequality (5).
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4. Comment

One may wonder if one can strengthen our main result Theorem 1 in such a way as 
to include also the instances s ∈ {1, 2, 4} maybe at the cost of eliminating finitely many 
exceptions in the pairs (a, k). The fact that this is not so follows from the formulae:

(i) Un+k − Un = Un+k/2Vk/2 for all n ≥ 0 when b = 1 and 2‖k;
(ii) Un+k +Un = Un+k/2Vk/2 for all n ≥ 0 when b = 1 and 4 | k or when b = −1 and k

is even;
(iii) U2

n+k + U2
n = U2n+kUk for all n ≥ 0 when b = 1 and k is odd,

which can be easily proved using the Binet formulas (6). Thus, taking m = n + k/2 (for 
k even) and m = 2n + k for k odd and b = 1, we get that divisibility (3) always holds 
with some s ∈ {1, 2, 4}. We also note the “near-miss” U4n+2 | 4(U6

n+1 −U6
n) for all n ≥ 0

if (a, b, k) = (4, −1, 1).
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